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Abstract—The analysis of a rigid, perfectly plastic rectangular beam with constrained ends subjected
to a rectangular pressure pulse of finite duration is presented. Closed form expressions are obtained
for the maximum permanent deflection for both simply supported and clamped boundary
conditions. These expressions are valid for the full dynamic range from pseudo-static step load to
high pressure impulsive loading. The results indicate that the response is strongly influenced by
geometry changes even for small deflections. Finally the response expressions are combined to form
isoresponse relationships which when plotted form isoresponse curves of direct engineering use.

NOTATION

F(1/2,¢) incomplete elliptic integral of the first kind with modulus 1/,/2 and amplitude ¢
I impulse in pressure pulse per unit length, Pt

1, ideal impulse, eqn (39)

K complete elliptic integral of the first kind with modulus 1/,/2
L half-beam length

M bending moment

M, fully plastic bending moment

N axial force

Ny fully plastic axial force

P(1) pressure load per unit length

P, intensity of rectangular pulse

P, static collapse pressure per unit length

Q shear force

T time at which travelling hinges arrive at midspan
V, amplitude of velocity profile

b beam width

c wave speed, \/(No/m)

cn Jacobian elliptic function

h beam depth

m mass per unit length of beam

¥4 nondimensional pressure, P, /P,

Pe limiting nondimensional pressure for long load duration
sd Jacobian elliptic function

t time

L response duration

I3 time at which string mode starts

w transverse deflection

wg transverse central deflection

x coordinate measured from centre of undeformed beam axis
B nondimensional impulse parameter, I*/mhP,

Bo impulsive limit of 8, I3/mhP,

B. step load limit of B corresponding to p,

£ extensional strain rate

I dimensionless time scale, eqns (49a, b)

T limiting value of u, eqns (50a, b)

pn) plastic hinge position at time ¢, Fig. 1(c)

T pulse duration

¢ amplitude of elliptic integral F, eqn (15)

¥ curvature rate
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1. INTRODUCTION

The behaviour of structures under transient dynamic loads sufficiently strong to cause large
permanent deformation is a subject of considerable interest, and has a wide variety of
practical applications.

The general field of dynamic plastic analysis of structures is broad and the published
literature is very extensive; a number of survey articles have appeared during the last few
years{1--5]. The most recent compilation and analysis of published research results on air-
blast reponse of beams and plates was presented by Ari-Gur ef al.[6]. Among the numerous
articles in the field of dynamic plasticity only a few will be mentioned, with emphasis on
those which give theoretical analyses of beams.

The rigid-plastic idealization has been used by most authors. In one of the earliest
works in this field, Lee and Symonds([7] treated the problem of a transverse impact force
applied at the midpoint of a uniform beam with free ends. In a subsequent paper[8] Symonds
obtained simple solutions for clamped and simply supported beams subjected to uniformly
distributed loading with time histories that satisfied the restricted definition of the so-called
“blast type” loading (i.e. loads that instantaneously rise to a peak magnitude and then mono-
tonically decrease). Symonds and Mentel[9] studied the influence of axial restraints on the
behaviour of rigid-plastic beams loaded with a uniformly distributed transverse impulse.
Humphreys{10] conducted a series of experimental tests on flat steel beams using sheet ex-
plosives to provide a short duration impulsive type loading. It was then concluded that for
engineering purposes the rigid-plastic solution including axial constraints gave a fairly good
approximation of the permanent plastic damage due to impulsive loading. Nonaka[l1]
made a theoretical and experimental investigation into the response of a clamped,
axially restrained beam with a concentrated mass at its centre subjected to impact loading.

Jones[12] suggested a simple method for estimating the combined influence of strain-
hardening and strain-rate sensitivity on the permanent deformation of impulsively loaded
rigid-plastic beams. Jones[13] also investigated the behaviour of rigid-plastic rectangular
beams subjected to uniform “dynamic” step loads of finite durations, using an approximate
theoretical procedure which included the influence of finite deflections. This approximate
procedure utilized time-independent deformation profiles identical to the corresponding
static collapse ones. However, above a certain magnitude of the pressure pulse, the deformed
shapes are expected to be time dependent. Krajcinovic[14] derived a closed form solution
for the dynamic infinitesimal response of a simply supported rigid-plastic beam subjected
to a uniformly distributed dynamic load of arbitrary pressure-time history.

A number of references on numerical analysis of elastoplastic structures have been
cited in the review articles[1-6]. These methods may be needed for more general problems
but remain expensive and rather time consuming.

It is clear from a survey of the literature that there are very few “‘exact” rigid-plastic
solutions of beams which retain the influence of finite deflections and also account for the
time distribution of the dynamic loading. In particular, the problem of a simple beam with
constrained ends subject to a blast-type load of arbitrary duration has not previously been
solved in closed form.

In the present paper, the analysis of a rigid-perfectly plastic rectangular beam with
constrained ends subjected to a pressure pulse of finite duration is presented. The defor-
mation proceeds under two distinct mechanisms depending on the level of the peak pressure.
These mechanisms are described by kinematically admissible velocity fields that satisfy the
appropriate continuity conditions. Although the governing equations are derived for a
general pressure—time relationship, they are only solved for the particular case of a rec-
tangular pulse. It is assumed that the latter forms a limiting case of a blast-type loading.
Closed form expressions are developed for the prediction of the maximum permanent
deflection. Finally the dependence of the permanent deflection on the applied pressure and
impulse is obtained for a family of rectangular pulses. The results are represented by
isoresponse curves in a form convenient for direct engineering use.

This paper constitutes a briel outline of the research work reported in [15], and fuller
details may be found therein.
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2. FORMULATION AND ANALYSIS OF THE PROBLEM

2.1. Assumptions

In the following analysis, the material of the beam is considered rigid, perfectly plastic
and strain-rate insensitive. The dynamic pressure pulse P(z) which acts uniformly over the
entire beam length, is assumed to be of rectangular shape with intensity P, and duration
7. Although finite deflections are taken into account, their magnitudes are considered to be
small enough (compared to the beam length) so that the axial force can be taken as constant
along the beam. Following the linear theory of Symonds[8] and Krajcinovic[14], the initial
motion of the beam is assumed to proceed under two different mechanisms according to
whether the load intensity is “low”, P, < P,, < 3P, or “high”, P,, > 3P,, where P, is the
static collapse load.

A detailed analysis is presented for the case of a simply supported beam of uniform
rectangular cross-section. The results for the corresponding clamped ends case are also
summarized.

2.2, General description of response

In the initial part of the motion, the deflected shape of the beam consists of a single
central hinge with two rigid connecting pieces [Fig. 1(b)] if the pressure is low enough. For
higher pressures, the deflected shape is more complicated, with hinges forming away from
the centre [Fig. 1(c)] but moving towards the centre as motion proceeds. These two cases
will be referred to as beam mechanism 1 and beam mechanism 2, respectively. The equations
of motion for these two cases are nonlinear.

Pit)
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{a)

{b)

o Natural hinges

l ® Plastic hinges

Travelling plastic hinges

(c) Oi—— ——_—

T1
il

(d) — e —-

Fig. 1. Beam nomenclature and mechanisms of deformation.
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As the motion proceeds and the deflections increase, the axial load increases and
moment resistance decreases until at a central deflection of 4/2 (the half-depth), the entire
section is in tensile yield and the beam can no longer resist moments. At this point the beam
acts as a string with a constant tension and the governing equation of motion is lincar, We
call this the string mode [Fig. 1(d)].

In the process of performing the analysis there are many cases that have to be
considered, and onc of the most dillicult probiems is keeping track of where you are in the
solution process. Figure 2(a) shows a flow chart of the solutions that must be considered
for the case of low pressure pulses. With reference to the figure, the initial motion of the
structure is that of a loaded beam that has both bending and axial restraint. This is indicated
in the figure with a heavy vertical line marked LBM1 (Loaded Beam Mechanism 1). This
motion continues until one of three things occur:

(i) The beam comes to rest. This is indicated by the circled letter A and 1, i.c. final time.

Fig. 2(b). Flow chart of solution branches for high load.
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(ii) The beam deflection reaches /1/2, at which point the bending resistance is zero and the
member responds as a string. This is marked with 1, i.e. string time.
(iii) The time reaches the pulse duration 7, and the load is removed.

The first case (A) is a terminal situation, and will result in permanent deformations less
than 4/2,

For motion beyond 1, the structure responds as a string with the load still applied.
Thus a heavy vertical line labelled LSM (Loaded String Mode) is drawn down from that
point. Now this mation procceds until the member comes to rest (B) or the end of the pulse
is reached (r) at which time any further response would be as an unloaded string, marked
USM. The unloaded string motion then continues until the member comes to rest (C).

Returning to the original motion, if the third situation occurred, i.¢. 7 is reached before
i or 1, then the subsequent motion would be as an unloaded beam, marked UBMI.
Following this line down could lead to the member coming to rest (D), or the deflection
increasing until the string stage 4, is reached, at which point the unloaded string (USM)
equations would govern until the motion ceased (E).

For higher pressures, the initial deflected shape has two symmetrically located
hinges moving in towards the centre [Fig. 1(c)]. This is called Beam Mechanism 2 (BM2)
and Fig. 2(b) shows the flow chart for the solution steps for this case. When and if the
hinges reach the centre, the subsequent motion continues on with one hinge which is then
the same solution as used for the low pressure beam, i.e. LBM1 or UBMI. In this figure,
T represents the case where the hinges reach the centre before the f,, ¢, or 7 conditions are
reached. The other new term is UBM2 which stands for the unloaded beam mechanism 2
response, The dotted lines to points (F and I) represent conditions which one may think
possible, but because of the requirements for the double-hinged mechanism cannot occur.
Note that the string mode can be reached directly by the beam mechanism 2 response.

From Figs 2(a) and (b), it is seen that there are three basic types of response, the beam
with a central hinge, the double hinged beam with moving hinges and the plastic string. In
each type there is also the loaded and unloaded cases, which although not changing the
solution form requires matching of conditions at the time of going from the loaded to
unloaded stages.

The beam and string equations and solutions will be presented in general. However,
the detailed analysis of all the possible solution branches will not be given, only the
expressions for the final permanent deflections and guidelines on the pressure and impulse
parameters that lead to each particular branch.

2.3. Equation of motion, yield condition and associated flow rule

Let x be the coordinate measured from the centre of the undeformed beam’s centroidal
axis, w, the transverse deflection, M and Q, the bending moment and shear force, respect-
ively, N, the axial force and m, the mass per unit length of the beam. By D’Alembert’s
principle, the inertia load is —mw(x,?) and the equation of motion of the beam can be
written as

N(@OW" (x, 1)+ M"(x, 1) = Q'(x, 1) = mW(x, 1) — P(1). (0

The yield condition which specifies the critical combination of axial load and bending
moment under which plastic flow can occur for a rectangular cross-section is

M NY
m*(m)“ @

where M, and N are the fully plastic values of bending moment and axial load, respectively.
Also 4M /N, = h, where h denotes the beam depth.
The flow rule appropriate to the above yield condition has been shown by Onat and
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Prager{16] to take the form

Neg¢ N
=2 (3)
Moy No

where ¢ is the extensional strain rate and y the curvature rate of the centroidal axis. Figure
3 illustrates, in geometrical terms, the parabolic yield curve [eqn (2)] and its associated flow
law. For the deformation mechanisms of Figs 1(b) and (c), it is a simple matter to show
that the ratio of the strain rates é/{ = w,, so that the flow rule as expressed by eqn (3)
becomes

— I ———— I ——— 4
N, 2M, h @

where wy = w(0, 7) is the central deflection. Thus as long as w, < #/2, N < Ny and eqns (2)
and (3) hold. Once w, reaches 4/2, N = N, and the moment resistance is reduced to zero,
and the beam behaves as a string under constant tension. We will first consider the dynamic
behaviour of the beam under small deformations (w, < 4/2) and subsequently treat the
plastic string response at large deflections (w, = h/2).

2.4. Beam mechanism 1. Py < P,, < 3P,
The geometry of mechanism 1 suggests a linear velocity profile of the form

wix, 1) = wy(t) |:1 - %] for 0<x<L )

where L is the half-length of the beam. The initial conditions here are wo(0) = Wwo(0) = 0.
It may be shown that the configuration of mechanism 1 leads to a violation of the plasticity
condition [eqn (2)] as the axial load builds up. However, owing to its mathematical simplicity
this mechanism might reasonably be taken as a first approximation during small but finite
deflections. The equation for dynamic equilibrium of the beam in terms of the axial load
and moment at the centre is then

L2

L%o' Mo‘i’

Plastic strain rate vector

tan~'(1/2)

N »
o — 'NOG
NO

Fig. 3. Parabolic yield surface and plastic flow vector.
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Using the yield condition and the flow rule, eqns (2) and (4), respectively, leads to
4 | L? .
Myl 1+ 7 wp | = 5 [P(1)— 5] N

(i) Loaded phase, LBM1. For a rectangular pressure pulse with P(1) = P, eqn (7) can
be simplified to

Wo+Awd =v ®)
where
1= ©)
and
v=—3—(P,,,—P0) (10)
2m

with Py = 2M,/L? for a simply supported beam. The solution of eqn (8) can be obtained
by multiplying each side by 2w, and integrating, which yields

24
Wi+ 3 w3 —2vw, = constant an

where the constant of integration vanishes here due to the initial conditions. Separation of
variables followed by an integration of eqn (11) leads to

n/2 d¢
1-\/(a/v)L \/m(l—isianS) (12)
where
a2=¥=3h2(p—-1); 0<a<.,/(3/2)h (13)
and
p=P,/Pg (14)
¢ = cos™' \/(wo/a). (15)
The integral in eqn (12) can be evaluated explicitly, so that
1= /(e/v) [K(1//2) = F(1/{/2, $)] (16)

where K = K(1//2) ~ 1.854, is the complete elliptic integral of the first kind with modulus
1/{/2, and F(1/,/2, ¢) is the incomplete elliptic integral of the first kind with modulus 1/,/2
and amplitude ¢. Equation (16) yields the time ¢ required to reach a specific deflection
wy(1). Upon regrouping the terms, eqn (16) becomes

F(1//2,¢6) = K—at (17)
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where

a = /(vja) = J(Po/mh) [3(p—1)]"". (18)

From eqns (15) and (17), it follows that
wolt) = & cos? ¢ = a cn’(K—at) (19)

where cn is a Jacobian elliptic function.

The motion of the beam in this phase continues until one of the following three
situations occurs:

(a) the beam comes to rest at ¢ = f,
(b) the transition from beam to string behaviour occurs at ¢ = ¢, or
(c) the load is suddenly removed at ¢ = 7 and the unloaded phase commences.

Case (a) represents a terminal situation with permanent deformation of the beam. The time
tyat which the beam comes to rest can be determined from eqn (19) as ¢, = K/a. The final
deflection is then given by w(t;) = &, or in nondimensional form

Zf \/3 _ 1]”2. (20)

It can be shown that for &,/h < 1/2, the pressure ratio p < 4/3. If p > 4/3, the beam
will not cease moving in this phase and the string mode may be reached before the load
comes off at r = 7. With the aid of eqns (15) and (17), the time ¢, at which the string mode
starts is given by t, = (1/a) [K—F(1//2, ¢,)], where

112
¢, = cos™' (/(h/20)) = cos™' [S(p 1)} ) (21

Furthermore, the central velocity at this instant can be obtained from eqn (11) by setting
wgo = h/2. The string mode analysis is given in Section 2.6.

(ii) Unloaded phase, UBM 1. During this phase of motion, the beam is unloaded and
continues to move until :

(a) the deformation finishes at ¢ = ¢, or
(b) the central deflection w, reaches #/2 at t = 1,.

Following the same procedure as developed earlier, the governing equation of motion [eqn
(11)] reduces to

24 3 3
W3(1) + SO + —Powo (1) = = Powa (1) @2)

where wq(t) = a cn*(K—at) is the central displacement at the termination of the loaded
phase, which provides the initial conditions for this phase.

In case (a) above, the final central deflection J,can readily be obtained from eqn (22)
by setting wq(f;) = 0. Thus, in nondimensional form we have

5 4(s Y ,
_,§_+§(7f) =§p\/(p—1)sd2{\/ﬂ [3(p—11"*/p} (23)
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where sd is a Jacobian elliptic function and

12
= mhP, (24)
where
I= J P(t)di=P,1 (25)
0

is the total impulse (per unit length) applied to the beam.

In case (b) above, the string stage is reached before the deformation finishes, and the
initial velocity of the string must match that of the beam at ¢ = ¢, given by eqn (22) with
wolt,) = A/2.

2.5. Beam mechanism 2: P,, > 3P,
The velocity field for mechanism 2 [Fig. 1(c)] is given by

w, (1), for 0<x<p(t)

wix, t) = (26)

W, (1) for p(1)<x<L

L—x
L-p(t)’
where w,(¢) is the deflection and p(¢) the distance from the beam centre of the travelling
hinge point. Owing to the symmetry of the problem we refer only to the right half of the

beam in the following.
Differentiating eqn (26) with respect to time yields

W, (1), for 0<x<p(t)
Wwix, 1) = L-x ¢4))

[, (1) + pw, (f)/(L—P)]L—_——pm, for p(t)<x<L

as the acceleration field. Within the flat central region confined by the hinges, the moment
is constant and hence the shear is zero. Therefore, it follows from eqn (1) that the equation
of motion for the central flat segment is

mw, = P(1) (28)

with initial conditions w,(0) = #,(0) = 0.

The equation of motion for the outer segment of the beam is similar to that of the single
hinge mechanism [Fig. 1(b)] of the previous analysis. Assuming that all the deformation
consisting of both bending and stretching occurs in the outer segment of the beam, eqn (11)
can be made to apply in this case merely by replacing L, wy and W, by L—p, w, and
Ww,+ pv,/[L— p], respectively. As a result, the equation of motion for the outer segment
becomes

M, (1 + %wﬁ) = L(L—p)* P(t)—$mob, (L~ p) (29)

where eqn (28) has been used to eliminate the acceleration term w,.
The motion of the beam consists of three phases as follows.

(i) Loaded phase, LBM?2. During this phase, P(¢) = P, so that by repeated integration

SAS 23:)-K
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of eqn (28) and use of the initial conditions we obtain

, P, 30
W, ="
P = (30)
P, 31
W, == -
r2m (1)

Owing to the continuity of displacement and velocity at the hinge section, we can introduce
eqns (30) and (31) into eqn (29) which yields a first order ordinary differential equation for
p(t) whose solution can be written as

1 P 2 /2
L—p=L/\/G/p) [1 + g<—") t‘] . (32)

mh

Equation (32) gives the instantaneous location of the plastic hinge in the interval
0 < p(1) < L and is valid for ¢ < 7. The initial position of the hinge is p(0) = L[l —./(3/p)]
as was also obtained from infinitesimal bending theory[8, 14]. Equation (32) indicates that
during the period of load application the plastic hinges move towards the centre.

The beam will not come to rest in this phase of motion since the central portion is
always accelerating. The motion continues until :

(a) the deflections become large enough to initiate the string response at ¢ = ¢,,
(b) ¢ reaches T when the load is removed and the unloaded phase of motion begins, or
(c) the hinges reach the centre at 1 = T..

Case (a) can be analyzed in the manner described in Section 2.6. The analysis of case
(c), which is essentially the same as that employed for the low load case, follows the various
branches given in Fig. 2(a). Fortunately, this case only occurs for pressures, p, that are
slightly greater than 3 and its analysis can be omitted with very little loss. Case (b) will be
studied in the following.

(ii) Unloaded phase, UBM?2. The motion in this phase is governed by eqns (28) and
(29) with P(¢) = 0. Thus

W,=0, 0<x<p(t) (33)

4
Mu(l + pw,%) = —dmip(L—p),  p()<x<L. (34)

It may be shown, using eqns (33) and (34) and matching the conditions at ¢ = 7 with those
at the end of the loaded phase, that

2 2
[L—p)? = @743 {t+ ; (m—l—’) (t—1/2)° + 3]—0 (F:Z) 13}. 39)

Equation (35) gives the hinge location in this phase. Since the central region moves with a
constant velocity according to eqn (33), the beam cannot stop during this phase. However,
one of the following two cases can occur.

(a) The width of the central flat region continues to shrink until at time ¢ = T the plastic
hinges on either side of the midspan coalesce into a single hinge at the centre, i.c.
p(T) = 0. Thereafter the third phase of motion ensues and the beam deforms in accord-
ance with mechanism 1. It is in the latter phase that the final deformation can be reached
for small deflections.
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(b) The deflections become sufficiently large to initiate the string mode at which point
w,(t) = h/2.

The former case will be treated in the following.

(iii) Unloaded phase, UBM 1. Since the deformation in this phase occurs by mechanism
1, the beam motion is governed by eqn (11) with P(z) = 0. Matching the conditionsatt = T
with those at the end of the loaded phase, and setting wy(t,) = 0, it can be shown that the
final central deflection &, corresponding to point (K) of Fig. 2(b) is given by

& 45y _ I 4(1)3 (1)
¥+ 3 =sam s e () r-m o

Now by definition, p(T) = 0and eqn (35) yields the following equation for the determination
of T

o (Lrma - - L2 .
+§%(-T/)_3_15;_§_0ﬂt' (37

If eqn (37) is used to eliminate T from eqn (36), then we can write an expression for d; in
terms of § and p as

& 4(6\ 2, 1 1 ,

7+§<h) —§ﬁ—§(ﬁ/P)*E(ﬁ/P)- (38)

If during this third phase of motion the central deflection reaches 4/2, the beam goes into
the string mode before it stops moving,
It is interesting to note that the formula derived by Symonds and Mentel[9] for

the special case of impulsive loading can be recovered from eqn (38) by taking the limit
p— oo. This is

o 4 5,)3 2, 2 1}
h +3<7? =3h =3P, (39)
where I, is the ideal impulse corresponding to a load of infinite magnitude and zero duration.

2.6. String mode

The initial conditions for the loaded string mode response come from the beam
mechanisms when the deflection reaches 4/2. In the case of mechanism 1 which has straight
sections connected to a central hinge, the initial deflection shape is quite different from the
final string shape which is sinusoidal. However, Symonds and Jones[17] suggest that the
initial deflected shape is not critical. Furthermore mechanism 1 is known to be an approxi-
mation to a smoother deflection shape. Hence we assume that the initial displacement is
adequately represented by a half sine wave with amplitude /2. The initial velocity dis-
tribution is also assumed to be sinusoidal with amplitude V', determined such that the
kinetic energy matches that in the appropriate beam mechanism.

The initial conditions for the unloaded string mode (USM) can come from either the
beam mechanism or the loaded string mode. In either case, their distributions are assumed
to be sinusoidal with the initial amplitudes as described above.

The initial velocity amplitude is determined from

2 (L 12
Vo= [Zj. wi(x, t,) dx:l . (40)

(]
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The equation governing the motion of the string can be obtained from eqn (1) after sctting
M(x,t) =0and N = N, Thus

WX 1) = Aw(x )+ P(r); 2, (41
where
¢ = /(No/m) (42)
has the form of a wave speed.

(i) Loaded string mode, LSM. In the case that the string comes to rest while the load
is still on, it is easy to show that the permanent central displacement is given by

% _ grap (E)
h'\/(A +B%) + )P (43)
where
1, )
2 BG4, §<p<3 (442)
A="—"V,=
nch )
“lp-2JQpISN" p>3 (44b)
and
1 2y

(ii) Unloaded string mode, USM. In this case, the string mode motion continues after
the load is removed and the permanent central displacement becomes

o

L= J(C+DY (46)

where C and D are found by matching conditions at ¢ = 7. Thus

C=Acos u—Bsin u (47)

2 3
D = A sin p+ B cos p+(;)p (48)

where u is defined as

L3 ﬂ_[ I ]'/4 ) } 5
nc(t__t)_ \/2{17 3(p-1) (K F(l/\/2’¢s)] , fori<p<3 (49a)

L
N L

For those combinations of § and p which result in y > p,, where

forp > 3. (49b)

{tan" (4/B) forp < n’/16 (50a)
Be= Ytan~' (4/B)+n forp > n'/16 (50b)
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it can be shown that the final deflection of the string is attained during the load application
and its magnitude is determined by eqn (43).

When the string stage is reached in the unloaded state of the beam, the maximum
permanent deflection of the string is given by

2 12
Esi={1+ i V’} (1)

h 4" nicpr°
which can be expressed in terms of § and p after V is determined from eqn (40).

3. RESPONSE RESULTS

After carrying out all the solution steps outlined in the preceding section, we obtain
the final equations for the permanent deflection. These are summarized in detail in the
Appendix for both simply supportied and clamped boundary conditions. The circled letters
refer to the corresponding lettered points in Figs 2(a) and (b) and indicate the applicable
branch of the solution process. Also shown are the parameter regimes of validity for each
particular formula. Some of the deflection responses are shown graphically and discussed
in the following.

3.1. Low load

The final central deflection J,/A is shown plotted in Fig. 4 against the impulse parameter
B for a few representative values of the nondimensional pressure p within the low range,
1 < p <€ 3. To the left of the cross-hatched line the duration of load is small enough so that
the load is removed before the beam comes to rest, and so the response depends on the
impulse. To the right of the line the load is still on, and could remain on with no further
deformation, and so the final deflection is independent of the impulse.

<l
230
L p=3
N[
3t =i or(tezT )
3 p=7..° y
@l
Qo
P =4
< 0 / Eqs.(A.4)B(A6 Eq.(A.3)
(] ° ; =0 or
e r L {tg=T) lString mods
- \.s- :
;': L P Beam mechanism |
ar=Kor (t=7)
o Eq.(A5) Eq.(A.2)
o ]

0.0
.
-
L
L
-
-

0.0 20 4.0 6.0 8.0 10.0 120 14.0 16.0 180 20.0
_ 12
B =1/ mhFR,
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Fig. 5. Simply supported beam deflection curves for high load.

3.2. High load

The corresponding curves for p 2 3 are shown in Fig. 5. In this range of pressures the
results show that for short duration loads the response is sensitive to the impulse only, but
that for long duration loads the pressure is the important parameter.

A comparison of the resuits of this analysis with those of Symonds and Mentel[9] and
with experimental results[10, 17, 18], for the case of pure impulsive loads on a clamped
beam is shown in Fig. 6. Also shown is the pure bending response. It is seen that the present
results compare favourably with the experimental values. The experimental results are all
for steel samples which do show some strain rate effects, and so it is to be expected that the
analytical results would be above the experimental ones.

4, ISODAMAGE CURVES

4.1. Construction of isodamage curves
A useful way of representing the response of a structure is to establish the appropriate
“isoresponse” or “‘isodamage” curves. These are the loci of combinations of pressure and

o
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Fig. 6. Comparison of experimental and theoretical deflection of impulsively loaded clamped beams.
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impulse that produce the same response, in this case the maximum displacement of the
structure[19]. In this scction, we construct the simply supported beam isodamage curves
for two distinct levels of damage typified by small damage (J,/4 < 0.5) and severe damage
(6,/h = 0.5). Whenever reference is made to an equation in the tables, the simply supported
formula is implied.

4.1.1. Small damage (6,/h < 0.5). Keeping J,/h as a fixed quantity, the following
equation for f results from eqns (23) and (38).

g = JG( [(u¢2mr for 1<p<3 (52)

where ¢ = &(p, ,/h) is given by

¢ =sin™' /{y/(1+7/2)} (33)

with

0
y=4[7f+3(5’)]/ [/ G- 1) SCD)

For p > 3 the impulse parameter f§ is given by the smallest positive real root of the
polynomial equation

1 1 2 ) o
E(ﬂ/ﬂ)’*—(ﬂ/ﬁ[i—g ]+ }{+3(hf> =0 for p>3. (55)

Equations (52) and (55) give the p—f8 combinations that produce the same final deflec-
tion d,/h. As B — oo, the response can be characterized by a single parameter, namely the
pressure parameter p. given by

95
= <p <
1+3<h>, 1<p

which follows from eqn (20). The value of the impulse parameter f. beyond which the
dynamic pulse can be characterized by a step load, is given by the root of equation at = K,

or
_ Pcsz _Kz 4(‘5!)2 2/‘5f
ﬂc_.———-——\/(:; ( ]))_ > ‘1+-3 = l -, (57

The upper part of the isoresponse curves are asymptotic to an impulse parameter 8, given

by eqn (39) as
31 /0 4(5. Y
=303 )

In the intermediate dynamic loading realm (knee of the curve), both parameters § and
p influence the permanent deflections.

W

(56)

4.1.2. Severe damage (6,/h = 0.5). It may be shown that for 1 <p <3, é;/h < 1.42.
Hence we construct the pressure-impulse curves separately for damage above and below
this level.
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(1) 0.5 < é;/h < 1.42: the value of the pressure parameter p, in this case is given by eqn

(A.3) as
d; 1 2/2V
£)-140
P = ., 31<p. <3
LAY _(2V 2V
2\n b3 n) h

The corresponding value of the impulse parameter f. required to achieve the same central
deflection d,/h can be obtained from eqn (49a) as

(59)

2 e
Bc=p3{{z +[3(p ,)] [K—F(l/\/z.cbx)]} (60)

where . is defined by eqns (50a, b) with p replaced by p.. For 8 > £, it is sufficient to
represent the load intensity by p.. As pressure is increased from p, to p = 3, the pressure-
impulse relationship can be described by

i/4
= p2{§u+[3(ﬂ’_ , )] (K~ F(1142, ¢.\)1} (61)

for p. < p < 3and u > 0, where

N R - B
p=sin {__—\/(Azﬁ-Bz)} sin {\/—————-(A2+32)}. (62)

In the above the inversc sinc is an angle between —n/2 and n/2 with A4 and B given by eqns
(44a) and (45), respectively, and R defined as

_ 5 2
Qe e

If p is increased to a level that renders the quantity u negative, then eqn (A.6) prevails and
the f-p relationship becomes

2

B = [F(l/\/Z #) for p.<p<3 and u<0 (64)

\/(3(

where ¢ is given by egn (53) in which

2
v={e| (4] - 1]+ 3} fiovoo-mn (©9)

The remaining part of the p—f curve beyond p = 3 comes from the string mode. Using eqns

(A.8), (A.9) and (A.11) leads to
[ V2 1 ]
=p}| X-u+— (66)
B=r [n Sy

for p = 3 and for 1 > 0, where u is again given by eqn (62) but now the quantity a is defined
by eqn (44b).
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If u becomes negative for high pressure, two different cases arise according to whether
the plastic hinges are within the half-span (i.e. 0 < p < L) or at the midspan (i.e. p = 0)
prior to the onset of the string mode. The relevant equations become

GRS ORI

3 1
forp>3,p>ﬁand2+§(/3/P)+E(/3/P)3 <B

3 2 5f 1 _
30p’ﬁ <2,, 3)’” *4[(h)‘2]"° (58)

3 1
forp>3,p>pand2+ 5 (Blp) + E(B/P)3 2.
For very high loads as p —+ 0, we obtain from eqns (67) and (68)

p=1+ 2 (4 1] 69)

é
provided B, < 2 or Zj < 0.72 and

and

=3+ (" -40)] (70)

g

for 0.72 < 7’ < 1.42, where

8 7t2 6] 2 l

¢=§+‘2‘[(7) -z] 0
7!4 6/ 2 1 2

¢ =Té[(7> "z] - 2

Equations (69) and (70) define the location of the vertical asymptotes in the p—f space and
represent the value of the ideal impulse which produces the same damage J,/h as the
rectangular pulses of finite durations.

(i) 6;/h > 1.42: for this case, using eqn (A.7), the pressure p, is given by

N R G N
SERGRE)
ol (656

where

and
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Fig. 7. Simply supported beam isodamage curves for low damage.

The impulse parameter §. beyond which the response depends primarily on the pressure
magnitude is given by eqn (66) with p replaced by p. defined above. The points with
coordinates (f, p) that describe the dynamic and impulsive parts of the isoresponse curve
can once again be obtained from eqns (67)~(69).

4.2. Results

The results of the previous section are shown plotted in Figs 7 and 8 for the simply
supported beam. These are true isodamage curves showing the relationship which must
exist between pressure and impulse in order to produce a given level of damage, the
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Fig. 8. Simply supported beam isodamage curves for severe damage.
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Fig. 9. Clamped beam isodamage curves for low damage.

permanent deflection in this case. Figure 7 shows the low damage case for é,/h = 0.25, 0.5
and 1.0, and Fig. 8, the severe damage case for §,/h = 1.5,3, Sand 7.

The corresponding curves for the clamped beam are shown in Figs 9 and 10. The
equations for these curves were obtained from the results given in the Appendix following
the same procedures as in Section 4.1 for the simply supported beam. The static collapse
pressure P, used in these figures was the appropriate clamped beam value (i.e. two times
the simply supported value). Note that the scales of Figs 7 and 9 are the same to facilitate
comparison whereas those of Figs 8 and 10 are not.

The vertical asymptotes for the limiting case of impulsive loading are shown dashed
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Fig. 10. Clamped beam isodamage curves for severe damage.
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in all the figures and designated by 8 = f§,. Also shown by small circles are the points of
transition to the step load realm, i.e. points where the beam comes to rest just as the load
is removed.

The curves shown in Figs 7-10 indicate that the pressure and impulse must increase
rapidly in a nonlinear manner to produce higher levels of damage. If the curves for the
simply supported and clamped beam are superimposed, they unfortunately do not fall
together. However if they are replotted with dimensional pressure-impulse scales, they lie
quite close together with the clamped curves slightly to the right and above the simply
supported ones (because the clamped beam requires slightly more energy for the same
damage). The isodamage curves shown here are believed to be the first ever published for
the fully nonlinear beam response.

5. CONCLUSIONS

An approximate analytical procedure, which includes the effects of finite geometry
changes, has been developed herein to predict the response of axially constrained rigid-
plastic beams subjected to dynamic pulses of severe intensity. A closed form solution has
been derived for the simplest case, that of a rectangular beam acted on by a rectangular
pressure pulse of arbitrary magnitude and duration. The permanent central deflection was
found to depend strongly on both the pressure and the impuise.

It is encouraging to note that the results for the special case of a fully clamped beam
subjected to impulsive loading agree reasonably well with the corresponding experimental
values. The theoretical predictions for the response of beams to dynamic loads of finite
durations cannot be compared with experimental results since (to the authors’ knowledge)
no test data seem to have been reported for this case. Moreover, due to the lack of relevant
uniqueness or bounding theorems, it is impossible to assess whether the present predictions
are smaller or larger than the exact solution. An assessment of the validity of the various
approximations made in the theory outlined herein must await information from experi-
ments and/or numerical elasto-plastic solutions. Nevertheless until such supporting con-
firmation of the theory are obtained the predictions obtained here are believed to be
sufficiently accurate for preliminary design work. It should be noted, however, that the
present rigid-plastic results will be unconservative for low load levels with pulse durations
of the order of the elastic period of the structure. See [20] for estimates of the potential
erTor.

The final results presented as structural isodamage curves are particularly useful in
predicting the characteristics of the rectangular pulse required to cause a specified permanent
deformation of the beam. These isodamage plots provide a simple presentation of the
theoretical results and are extremely important in planning experiments,

It appears quite clear from the present study that geometry changes have a considerable
influence on the dynamic behaviour of beams even for small deflections and therefore they
should be retained in any dynamic analysis of beams with axial restraints.

Acknowledgement—This research has been supported by the Canadian Department of National Defence through
a contract from the Defence Research Establishment Suffield.

REFERENCES

1. N. Jones, A literature review of the dynamic plastic behaviour of structures. Shock and Vibration Digest, Vol.
7, August 1975, pp. 89-105.

2. N. Jones, Recent progress in the dynamic plastic behaviour of structures, Paris 1 and 2. Shock and Vibration
Digest, Vol. 10, September 1978, pp. 21-33 and October 1978, pp. 13-19,

3. N. Jones, Recent progress in the dynamic plastic behaviour of structures. Shock and Vibration Digest, Part
3, Vol. 13, October 1981, pp. 3-16.

4. W.E. Baker, Approximate techniques for plastic deformation of structures under impulsve loading, 111. Shock
and Vibration Digest, Vol. 14, November 1982, pp. 3-11.

5. P. 8. Symonds, Survey of methods of analysis for plastic deformation of structures under dynamic loadings.
Brown University, Report BU/NSRDC/1-67 (1967).

6. J. Ari-Gur, D. L. Anderson and M. D. Olson, Air-blast response of beams and plates. Structural Research
Series, Report No. 30, Dept. of Civil Engineering, University of British Columbia, Vancouver, Canada, fune



Dynamic response of axially constrained plastic beams to blast loads 173

(1983). See also paper in Procs. 2nd Int. Conf. on Recent Advances in Struct. Mech., University of
Southampton, U.K. (1984).
7. E. H. Lee and P. S. Symonds, Large plastic deformations of beams under transverse impact. J. Appl. Mech.
Trans. ASME 74, 308 (1952).
8. P. S. Symonds, Large plastic deformations of beams under blast type loading. Proc. of the 2nd U.S. National
Congress of Applied Mechanics, ASME, pp. 505-515 (1954).
9. P. S. Symonds and T. J. Mentel, Impulsive loading of plastic beams with axial constraints. J. Mech. Phys.
Solids 6, 186 (1958).
10. J. S. Humpbhreys, Plastic deformation of impulsively loaded straight clamped beams. J. Appl. Mech. Trans.
ASME 22,7 (1965).
11. T. Nonaka, Some interaction effects in a problem of plastic beam dynamics, Parts I-111. J. Appl. Mech. Trans.
ASME 34, 623 (1967).
12. N.Jones, Influence of strain-hardening and strain-rate sensitivity on the permanent deformation of impulsively
loaded rigid-plastic beams. Jnt. J. Mech. Sci. 9, 777 (1967).
13. N. Jones, A theoretical study of the dynamic plastic behaviour of beams and plates with finite-deflections.
Int. J. Solids Structures 7, 1007 (1971).
14. D. Krajcinovic, Dynamic response of rigid-plastic beams—general case of loading. J. Struct. Mech. 3, 439
(1975).
15. R. Vaziri, Finitc deflection dynamic analysis of rigid-plastic beams. Structural Research Series, Report No.
31, Dept. of Civil Enginccring, University of British Columbia, Vancouver, Canada, May (1985).
16. E. T. Onat and W. Prager, Limit analysis of arches. J. Mech. Phys. Solids 1, 77 (1953).
17. P. S. Symonds and N. Jones, Impulsive loading of fully clamped beams with finite plastic deflections and
strain-rate sensitivity. Ini. J. Mech. Sci. 14, 49 (1972).
18. N. Jones, R. N. Griffin and R. E. Van Duzer, An experimental study into the dynamic plastic behaviour of
wide beams and rectangular plates. Int. J. Mech. Sci. 13, 721 (1971).
19. G. Abrahamson and H. E. Lindberg, Peak load-impulse characterization of critical pulse loads in structural
dynamics. Proceedings of a Symposium held at Stanford University, California (Edited by G. Herrman and
N. Perrone), pp. 31-53. June (1971).
20. P.S.Symonds, Elastic—plastic deflections due to pulse loading. Proceedings of the Second Speciality Conference
on Dynamic Response of Structures: Experimentation, Observation, Prediction and Control (Edited by G.
Hart), pp. 887-901. New York, ASCE (1980).

APPENDIX

Sunmmary of results, including beams with clamped ends

The results obtained for simply supported beams can be made to apply to clamped beams by merely replacing
the critical moment M by 2M whenever it occurs in each equation (this also includes the replacement of M, by
2M,) (see Refs [8, 9)). In accordance with the above modification the flow rule [eqn (4)] takes the form

== <L (A1)

It can be seen that the beam solution is now valid for central deflections less than A, the full depth of the beam,
as opposed to the half-depth for the simply supported case. The formulas for the permanent central deflection of
simply supported and fully clamped beams are both presented in the following tables. Note that the circled letters
A, B, etc., refer to the solution branch points shown in Figs 2(a) and (b).

Table A.l. Comparison of various parameters used in the analysis of simply supported and clamped beams

Parameter Simply supported beam Clamped beam
Py 2M,/L? 4M,/L?
" 1 ue . l 14
&, cos |:~——3(p_ l)} cos [———30’_ 1)]
at JBBGp-11"p JBRBE-0"p
M2 l 172
L~p(t) L[Z/B+ 320+ %(ﬂ’/p’)] pesp+ g5 @)
S TR R TR
I<p< \/2{ » 3G-D [K—F(1/\/2,¢.)] AW =D (K-F(1/y2,¢.)]
-
P23 _’L{J_ﬂ_i} L{ﬂ_ﬁ;@__'-}
N AN/ V2L o» N/

H, eqns (50a) and (50b) eqns (50a) and (50b)
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Table A.2. Theoretical prediction of final central deflection of simply supported and clamped beams: low
lond I <p <3

Terminal points

Simply supported

in Fig. 2(a) beam Clamped beam Eqn
® sk " YLy ONE T (A2)
:/iip <3 O A+ B+ (%)]p ‘2—’ = 2\/(A2+Bz)+2(§)3p (A3)
© J ii iis ‘%’ = J(C*+ DY) ‘5—,{ = 2/(C?*+D?) (A4)
® ‘1"<<sz 4 éhi + 45 (%)J = %(A2 +1) i—’ + % (%)J = g(/\2+ 1) (A5)
o PYT wLie] 4feEe]” we

A, B, C and D are given by eqns (44a), (45), (47) and (48).

= {183,;\/(3(,;— 1)sd*(ar)~ l]

12

Table A.3. Theoretical prediction of final central deflection of simply supported and clamped beams: high load

p=3
Terminal
points in
Fig. 2(b) Simply supported beam Clamped beam Eqgn
® No permanent deformation No permanent deformation
(5 2 3 3
© u>p 7:—=\/(A2+B’)+(;>p %=2J(A2+B2)+2<%>p (A7)
©  O<u<p %’: J(C*+DY) =2/(C*+D?) (A8)
® No permanent deformation No permanent deformation
u<0 p(u) i o |22} p(1) v
o p(t) =0 [ ()l’[ 7’= A p |+2~—L— +1 (A.9)
® o 4oy _2 s o Loy 2, ) !
i 3( ) 38- 2(Ii/p) (ﬁ/p) w3\ ) =33~ 12O(l‘i/p) (A.10)
0 2 2
o M=o LAV 32— S _ 1y(2)] 25
p)<0 3 =1z)136-D =32 36-2
1 1 12 i 1 11
=3Bl - ﬁ(ﬂ/l’)’] + Z} -3 Bip)~ ﬁd(ﬂ/l’)’]'* 1} (A.11)

A, B, C and D are given by eqns (44b), (45), (47) and (48).



